a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

多伦多大学开发反面部识别系统 人脸识别率降至0.5%

研究表明,一些面部识别算法对某些种族存在固有的偏见。
资讯频道文章B

  面部识别系统是有争议的,至少可以这样说。上周,亚马逊因向执法机构提供面部扫描技术而成为头条新闻。研究表明,一些面部识别算法对某些种族存在固有的偏见。

  人们对这种人工智能监视系统的担忧,促使多伦多的研究人员开发了一种针对它们的工具。多伦多大学的教授Parham Aarabi和研究生Avishek Bose发明了一种算法,通过对图像进行光转换,动态地破坏面部识别系统。

  “随着面部识别技术越来越先进,个人隐私成为了一个真正的问题,”Aarabi在一份声明中说,“这就是反面部识别系统的用武之地。”

  旨在破坏面部识别的产品和软件并不是什么新鲜事物。在2016年11月的一项研究中,美国卡内基梅隆大学的研究人员设计了一种眼镜框,可以误导面部识别系统,使其产生错误的识别。在2017年11月,麻省理工学院和日本九州大学的专家们用一种算法将一幅3D打印的海龟的照片标记为了步枪,方法是改变照片中的一个像素。

201806041120328614.png

  图:研究人员的反面部识别系统在起作用(来源:多伦多大学)

  但根据Bose和Aarabi的说法,这是使用人工智能的首批解决方案之一。他们的算法是在600张人脸的数据集上进行训练的,它会发出一个实时的过滤器,可以应用到任何图片上。因为它的目标——图像中的单个像素——是特定的,因此它几乎是肉眼无法察觉的。

  这两名研究人员采用了对抗训练(adversarial training)技术。这种技术使两个神经网络相互对抗——一个神经网络从数据中获得信息,另一个试图破坏第一个神经网络的任务。Aarabi和Bose的系统使用第一个神经网络来识别人脸,并利用第二个神经网络来扰乱面部识别过程。

  他们的研究报告将在2018年IEEE国际多媒体信号处理研讨会上发表。Bose和Aarabi声称,他们的算法将人脸识别系统中被检测到的人脸的比例降低到了0.5%。他们希望在应用或网站上提供这种神经网络系统。

  “十年前,这些算法必须是人类定义的,但现在神经网络可以自己学习——除了训练数据之外,你不需要提供任何东西,”Aarabi说,“最终,他们可以做一些非常了不起的事情。这是一个很有意思的领域,有着巨大的潜力。”

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

a&s是国际知名展览公司——德国法兰克福展览集团旗下专业的自动化&安全生态服务平台,为智慧安防、智慧生活、智能交通、智能建筑、IT通讯&网络等从业者提供市场分析、技术资讯、方案评估、行业预测等,为读者搭建专业的行业交流平台。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈