IBM开发的认知计算系统Watson能够回答微妙、复杂、语义双关问题,显然,计算新纪元即将开启。
世界首个认知系统在2011年2月,Watson项目首次公开,Watson是IBM开发的认知计算系统,它在Jeopardy!节目中战胜了肯·詹宁斯和布拉德·鲁特尔。这是首次面向公众证实认知计算,标志着所谓AI寒冬的终结。可编程系统在之前60年的演化中并未能够理解混乱的非结构化数据,因此也参加不了Jeopardy!节目。Watson能够回答微妙、复杂、语义双关问题,显然,计算新纪元即将开启。
节目之后,Watson继续处理了更多的复杂数据集,在解谜之外,它发展出了理解、推理以及学习的能力。认知计算的目标就是照亮以往在我们世界中不为人知的部分——具体来说就是潜藏在非结构化数据中的模式和洞察——使得我们能够对更重要的事情做出更明智的决策。认知时代的真正潜力将会是机器的数据分析、统计推断能力,以及人类特殊能力,比如自我引导的目标、常识和价值观。
这正是Watson被赋予的使命,也是它正在尝试做的事情。银行正在分析客户要求和金融数据,帮助自己更好地做出投资决策。高度监管产业中的企业不断在系统中查询,保证自己跟上经常变化的监管和合规标准。肿瘤学家利用专家经验和研究手段,测试认知系统能否帮助他们理解癌症患者医疗信息,找到个体化、循证的治疗方案。
这样的经历对于牵涉其中的专业人士来说意味着什么?世界知名的肿瘤学家,纪念斯隆-凯特琳癌症中心的LarryNorton博士正与Watson合作帮助内科医生对患者进行个性化癌症治疗。他说:“计算机科学发展迅猛,医疗事业也会受其影响。这被称为协同进化(coevolution)。我们要互帮互助。我预想这样的场景:病人、电脑、我的护士、我的研究生同事还有我自己都在监察室一起交流。”
在Watson的象棋博弈前辈DeepBlue在1997年击败世界象棋冠军GarryKasparov之后,我们首次看到这种共生的迹象。在那次演示之后,Kasparov继续参加这种新「自由式」的象棋联赛,在其中,选手们可以自由地使用任何他们喜欢的计算机程序。在这些联赛中,一些选手孤身奋战。一些完全依赖于计算机程序。但那些将计算机与他们自身的直觉和比赛天赋相结合的选手是最成功的。
“机器与人相配合的团队甚至比最强大的计算机更具优势。人类策略上的指导与计算机战术上的敏锐结合起来是所向披靡的。我们可以集中精力于策略规划而不是把那么多时间花费在计算上。在这些情况下,人类的创造力是最重要的。”——加里·卡斯帕罗夫前行的技术之路与何以可能的科学当Licklider为认知计算帮忙想出一种哲学方法时,他几乎无法表达出前行的技术进路。那条道路仍在被定义,不断调整。尤其是,我们敏锐地意识到数据正怎样塑造着我们的未来。Gartner预计世界的信息将增长800%在未来5年,而且80%的数据是非结构化的。包括人类语言记载下的每一件事(从教科书到诗歌),图片捕捉到每一个瞬间(CAT扫描每个家庭照片)以及声音记录下的每条信息。它是隐藏在气味、味道、文本和振动中的数据。它来自我们的活动,来自这个布满仪器的星球。
在价值日益源于信息、知识和服务的社会和全球经济中,数据代表着这个世界上最富有,最具价值,最复杂的原材料。直到现在,我们还没有方法对它进行有效开采。
可编程系统基于这样的规则:通过一系列预先设定的进程,从数据中得出结论。尽管它们强大而复杂,也是决定论的——其繁荣建立在结构化数据之上,但是无法处理定性或不可预见的输入。面对正在兴起的充满模糊和不确定性复杂新世界中的众多方面,这种死板束缚住了它们的拳脚。
认知系统是基于概率的,意味着它们被设计成去适应和理解非结构化语言的复杂性和不可预测性。他们可以“读”文本、“看”图像、“听”自然语音。它们阐释那些信息,整理它以及提供他们意思的解释,还伴有它们结论的基本原理。他们不提供最终的答案。事实上,他们并不「知道」答案。相反,它们被设计成从多个来源中去衡量信息和想法,去推理,然后提供假说以供参考。一个认知系统给每个有潜力的洞见或答案分配一个自信水平。
Watson在Jeopardy!中犯的一个错误就是例证。在第一天的比赛将结束时,“FinalJeopardy”的类目是“美国城市”。线索是“以二战英雄命名的最大的机场;二战的战役中第二大的”。
答案是芝加哥(O’Hare和Midway)。Watson猜测为多伦多。Watson困惑于这个问题有很多原因,包括它的语法结构,在伊利诺斯州有一个城市叫Toronto并且TorontoBlueJays在美国棒球联盟中打棒球。
结果,Watson自信水平出奇得低:14%。如果这是Jeopardy!常规线索,而不是「FinalJeopardy」阶段的线索,参赛选手很可能会响铃,但是Watson不会响铃,因为答案自信水平太低。Watson知道哪些事情是它不知道的,图2中的5个问号暗示了这一点。
然而,认知系统能够从错误中学习。通过大规模机器学习,认知系统能从训练和运用中不断得以改善。
消化语料库知识,根据任何给定主题接受专家训练,认知系统可以通过一系列Q&A的方式得以训练。人与系统互动,就系统反馈的正确性做出反应将会提升机器的「知识」。
当Watson参加Jeopardy!时,它完成了一件事——以五种技术为基础的自然语言Q&A。今天,Q&A仅为Watson众多以API方式提供的功能之一。打那以后,我们已经研发出多达20多个新的API,采用了50多种不同认知技术。这也是认知计算的技术进路和当前人工智能进路的关键区别。认知计算并不是计算机科学的孤立领域。需要许多学科知识,从硬件架构,算法策略,工业流程设计到行业专长.
我们每天使用的许多产品和服务——从搜索引擎广告应用,社交媒体网站面部识别到“智能”汽车,电话和电网——正在见证人工智能的方方面面.
绝大多数人工智能产品和服务都是为了实现某种功能目的,侧重应用,专为某种特定服务而设。它们使用了一些认知计算的核心功能。一些使用了文本挖掘技术。其他的采用机器学习进行图像识别。所有的产品和服务都局限于最初打造它们的构想。
相反,认知系统有五个核心功能:
一、与人的接触更加深入人们与系统的互动更加充分,这种互动是以每个人偏好的模式、形式以及质量为基础的。它们充分利用搜集到的数据创造出有关个体的精细画面——比如,地理位置数据,网页互动,交易历史,钟爱节目的模式,可穿戴设备数据和电子医疗记录——并为这幅图景添加一些很难察觉的细节:品味,情绪,情感状态,环境条件以及人际关系本质和强弱。从所有结构和非结构数据中进行推理,找出什么才是人际交流中重要的东西。通过不断学习,这些接触交流将传递出越来越大的价值,也会变得更加自然,有预见性,情感也会拿捏适中。
二、规模化和提高专业技能各种工业知识和专业知识正在以任何专家不能赶上的速度迅速膨胀——杂志、新协议、新立法、新实践和崭新的领域。医疗保健中有一个明显的例子,在1950年,人们预测全世界医学知识翻一番需要50年时间;到了1980年,时间缩短为7年;2015年,不超过3年。与此同时,个人一生能产生一百万GB的健康数据,相当于3亿本书。
为了帮助组织机构跟上步伐,人们设计了认知系统,它能作为专家的伙伴以提高他们的业绩。由于这些系统掌握了专业术语——医学、销售和烹调等术语——他们能够理解和传授复杂的专业技能。缩短了由内行变为专家所需的时间。另外,由于这些系统是由领先的从业人员训练的——不论是顾客服务,肿瘤诊断,还是判例法等任何行业——系统就能让很多人获取这些领先人士的秘诀。
三、用认知融合产品和服务认知技术让感受、推断和了解用户和周围世界的新一类产品和服务成为可能。持续改善和适应,增强功能以推出未曾想到的新用法,也因此成为可能。在汽车、医疗设备、器具和玩具行业,这些正在发生。物联网正在急剧拓展全球的数字产品和服务——哪里有代码和数据,哪里就有认知技术的用武之地。
四、认知运营成为可能认知也能转变公司运营的方式。融合认知功能的商业运营,能将内外资源中的数据表象化为财富。它让公司重视工作流程、文本和环境,这有利于持续性学习、改善预测和提高运营效率——以当今的数据流动速度做出决策。在这样的领域,比如市值平均10亿美元的公司每周花1,000人的工作时间用于供应商管理,这就是个好消息。
五、提升探索发现最终,认知商业将会拥有的最强工具是好得多的、可以照亮日益复杂又不稳定未来的“前灯”。
随着各行各业的领军人物争相在药物研发、复杂经济模型、材料科学、初创公司上放上大筹码,这样的“前灯”变得越来越重要。把认知技术运用到大数据上,领军人物能找到规律、机会和可执行的假设,仅仅通过传统研究或可编程系统,几乎不可能发现这些。
假如能像设想的那样实现认知计算,那么,底层平台必须足够宽广、足够柔性,以便在各行各业得到运用,它还必须支持跨行业运用。这需要一种全盘的研发进路,旨在打造一个强健的平台,它有许多功能可以支持来自开发者生态圈各种各样的应用。
这个平台必须涵盖机器学习、推理、自然语言处理、语音和图像识别、人机交互和对话和叙述生成等等。许多功能要求运用高性能计算,专门的硬件结构,甚至是新的计算范例这样的专业基础设施。每种技术都源自自身科技或学术领域。但是,这些技术必须和支持认知结果的硬件、软件、云平台和应用协同发展。
随着沃森的迅速演化,未来可能已初见端倪。举个例子,一种分析X光,MRIs和超声波图像的认知医学图像应用,它能处理医学期刊、书本和文章的自然语言。它利用机器学习来矫正和增强理解力。它还可以开发深度知识表征和推理,有助于形成可能的诊断结果。为此,需要专门图像处理器来支持大规模数据和人类专业知识,指导系统学习,解读系统生成的结果。
这种新模型的威力能用到任何领域。油气公司能把地震图像数据和对成千上万的论文、报告、时事、经济数据和天气预报的分析结合到一起,为开采提供风险回报分析。或者,通过分析测试成绩、出勤率和数字学习平台上学生行为信息,学校能建立纵向的学生档案和个性化教育计划。
IBM正在与多个领先的癌症研究机构合作,加快临床识别,为患者提供个性化治疗方案。它也被认为是短期内最有前途的认知计算应用之一。该计划旨在减少医学解读DNA的时间,了解个人遗传信息,从医学文献搜集相关资料的时间从几周变为几分钟。由此产生的分析结果使医生能够针对任意患者特定的癌基因突变做出诊断。只需几分钟,Watson就能完成遗传物质和医学文献的审查过程,产生一份可视化数据的报告,并以循证医学为基础,综合患者个人独特的基因提供可行的药物方案。临床医生可以评估这些证据,以确定它的疗效是否会比标准方案更有针对性。
前沿认知科学的含义和义务认知时代(TheCognitiveEra)是应用型科学发展的下一步,它帮助人类理解自然并改善人类的生存状况。在此意义下,它是一个老故事开启新篇章。围绕人工智能的争论只是其中一个最新的例子,是相信科学进步的人和那些害怕它的人之间古老争论的延续。与媒体和流行娱乐界的争论相反,在科学领域,裁决已定。追求认知性未来已成为广泛共识,人们也普遍认识有必要承担技术责任。
“技术创造可能性和潜力,但最终,我们的未来将取决于我们做出的选择。我命在我,不在技术。”——ErikBrynjolfsson,MIT(麻省理工学院,经济学著名教授)具体而言,我们会继续型塑认知计算对工作和就业的影响。与所有技术一样,认知计算将改变人们的工作性质。这将有助于我们更快速、更准确地执行一些任务。许多处理过程会更便宜,更有效。某些事,它甚至会比人类做的更好。这也是自文明诞生以来一直发生的情况:新技术被发现具有更高的价值,它让我们的社会和生活得以适应和进化。所以,我们有理由相信,此时此刻的情况与以往是一致的。事实上,认知时代会为人类开启一个知识、发现、机会都以指数级速度增长的世界。我们也有充分的理由相信,人类的工作将变得越来越有趣,也更具有挑战性和价值。
同时,社会的控制和保障也一样重要。对于智能系统的担忧再一次适用于此。从汽车、药品到手机,每一项技术的转换都会涉及个人和机构的安全问题。这些问题已经刻不容缓,也将继续与认知技术发展如影随形。这些问题已经被今天激进的技术民主化(网络和云端的快速传播是背后的驱动力)以及随之而来的成本削减所点燃。
我们相信,答案不是试图限制民主化,而是要拥抱它,同时设计出融合隐私、安全和人工控制的认知系统。
为下一代人类的认知铺平道路最后,所有的技术革命不仅是被发现的,而且是由商业和社会需求推动的。我们追求这些新的可能性并不只是因为我们有能力,而是因为我们有所求。
每一项革命性的技术,由于世界的复杂性和我们自己根深蒂固的偏见和方法,我们最初对它们的理解都是有限的。然而,所有的限制必然会被进展所突破。事实上,我们一直在为不知道付出昂贵的代价:我们不知道患者的病因出在哪里;不知道产品的消费者在哪里;不知道重要的自然资源藏在在哪里;不知道每一项的投资风险在哪里。
“行为明智的最大障碍是无知,它也是恐惧的最大来源。小小的蜡烛会发出误导性的微弱光线,投射出巨大而不详的阴影。正午阳光光线明亮,不会投下一丝阴影。是时候将这整个人与机器的难题置于耀眼的正午阳光之下了。计算机永远不会剥夺人的主动权,也不会取代人类的创造性思维。计算机会把人类从低级的重复性思考中解放出来,让人类更加充分利用理性,创造更多机会。”——ThomasWatsonJr.(小托马斯.沃森,IBM第二代总裁)在IBM,我们相信,世界上的许多难题终将得到解决。借助认知计算,我们会实现这一宏伟目标。
炒作“人机大战”的戏码会让我们偏离主题,这些戏码只存在于那些激动人心却很具误导性的小说里。现在的认知系统不是我们的竞争对手,将来也不会是。科学和经济学的证据都不支持这种恐惧。真正的认知系统实际是一种深化重要关系的工具——人与世界的关系。
通过它们,我们将为下一代人的认知铺平道路。我们能用崭新而有力的方式思考和推理。认知系统是真正灵感源于人类大脑的机器。同样的,这些机器也会真正激发人的大脑,提高我们的理性能力,改变我们的学习方式。在21世纪,知道所有的答案不能称得上智慧,但提出更好的问题才算真正的天才。
凡文章来源标明“安防知识网”或“安全自动化”的文章著作权均为本站所有,禁止转载,除非取得了著作权人的书面同意且注明出处。违者本网保留追究相关法律责任的权利。