a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

中科院在生成对抗网络研究人脸识别领域获新进展

生成对抗网络的提出是继深度神经网络之后的一大革命性新进展。
资讯频道文章B

  根据“中科院之声”的消息,近日,中国科学院自动化研究所智能感知与计算研究中心在生成对抗网络基础上,提出高保真度的姿态不变模型(High Fidelity Pose Invariant Model,HF-PIM)来克服人脸识别任务中最为经典的姿态不一致问题。

  为解决先前工作中的某些限制,论文作者在实验中引入了一种能反映三维人脸模型和二维的人脸图像之间点到点的关联稠密关联场,让网络能够在二维图像的指导下学习到隐含的三维人脸信息;并设计了一种全新的纹理扭曲(warping)过程,可以有效地把人脸纹理映射到图像域,同时又可以最大程度地保持输入的语义信息;以及提出了一种对抗残差字典学习过程,从而可以在不依赖三维数据的情况下更有效地学习人脸纹理特征。

       实验结果表明,该方法在基准数据集上的表现的视觉效果和定量性能指标都优于目前最好的基于对抗生成网络的方法。此外,HF-PIM所支持的生成图像分辨率也在原有方法的基础上提升了一倍。该论文被神经信息处理系统大会(NIPS)所收录。

  据了解,生成对抗网络的提出是继深度神经网络之后的一大革命性新进展,已被《麻省理工科技评论》评为2018年“全球十大突破性技术”,通过两个AI系统的竞争对抗,极大化加速机器学习的过程,进而赋予机器智能过去从未企及的想像力。


参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

a&s传媒是全球知名展览公司法兰克福展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,a&s传媒拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈