a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

GDSF:动态人脸识别技术的难点与解决思路

a&s《安全&自动化》主办的第九届GDS在在广州中心皇冠假日酒店隆重开展。开幕第一场的讲座是由全国安全防范报警系统标准化委员会人体生物特征识别应用技术委员会的姚若光委员带来的“动态人脸识别技术的难点与解决思路”。
资讯频道文章B
  7月29日,由a&s《安全&自动化》主办的第九届GDS在在广州中心皇冠假日酒店隆重开展。开幕第一场的讲座是由全国安全防范报警系统标准化委员会人体生物特征识别应用技术委员会的姚若光委员带来的“动态人脸识别技术的难点与解决思路”。

  作为一种比较新而且发展快的技术,并不是所有人都对这门技术有较为清晰的认识和理解。比如人脸识别技术的算法是怎样的,人脸识别技术目前发展到什么程度了,该技术对图像类别及质量有何要求,在实际应用中又有那些分类等等,这些问题姚委员在讲座中都一一为大家进行了比较细致的解答,并对动态人脸识别技术的系统构成和优势、动态人脸识别与常规监控的区别也进行了阐述。

  如地铁、高速公路卡口、车站卡口、超市反扒、边检、人群分析等等。因而很多厂家也生产了动态人脸识别技术的相关产品,如具有人脸识别功能的摄像机、人脸识别分析仪等等。但是林林总总的人脸识别产品给人以丰富的选择的同时也带来了相当大的选择困扰,到底如何选择人脸识别产品呢?哪些产品在人脸识别方面技术比较先进呢?

  就这类问题,姚委员介绍了近期省公安局组织的人脸识别摄像机的测试,测试地点在东山口地铁站某扶梯口进行。在该测试中, 性能表现最好的摄像机为Basler黑白摄像机,在监控名单库1和库2时采用低清算法的性能表现最好。在监控名单库3时采用高清算法的性能表现最好,误报率在1%时漏报率维持在25%的实际可用水平。

  参照国标《安全防范视频监控人脸识别系统技术要求》,该次测试监控名单库相当于C级(监控名单库容量为1万至10万人),参加测试人员也基本满足于C级水平(注册测试人员多于10人,每人至少通过2次,即不少于200人次通过;非注册测试人员需为注册测试人员通过次数的2倍以上)。在该次测试中,没有达到一级的系统性能级别,二级系统性能级别有1个测试组合,三级的性能级别有28个测试组合,四级的性能级别有10个测试组合。(误报率在5%的情况下,漏报率小于5%的为一级,5%~20%为二级,20%~50%为三级,50%~70%为四级)。

  从实际测试来看,用户的预期与当前的技术水平之间的差距还是比较大的。人脸识别技术在动态监控应用中面临的压力实际上也比较大。

  1.用户希望正确报警率要求高。而现实是理论上来说必须接受高误报率。在技术方面,要达到高正确报警率,可以通过降低阈值来实现,但是降低阈值的代价是:高误报率。为了达到95%正确报警率,很多算法可能会产生300%或更高的误报率。

  2.用户希望监控库足够大,往往要求数万或几十万,甚至上百万的监控名单,希望能捕到“大鱼”。现实是库容量大就必须接受高误报率。

  3. 用户希望大规模成网建设,能够勾画出监控人员的活动轨迹。 现实是必须高投入,重新建专用网络和相关硬件。

  4. 用户希望尽量使用目前的监控设备(摄像机和网络)。 现实是现有的摄像机清晰度不够,图像质量差,用于场景监控时视频中人脸过小,网络带宽不够等等造成无法使用现有设备。

  5. 用户希望少产生误报甚至不产生误报。 现实是这样就必将损失正确报警率和减少监控库容量,与用户的想法相违。

  动态人脸识别在应用中遇到的挑战

  1.光照问题

  面临各种环境光源的考验,可能出现侧光、顶光、背光和高光等现象,而且有可能出现各个时段的光照不同,甚至在监控区域内各个位置的光照都不同。

  2. 人脸姿态和饰物问题

  因为监控是非配合型的,监控人员通过监控区域时以自然的姿态通过,因此可能出现侧脸、低头、抬头等的各种非正脸的姿态和佩戴帽子、黑框眼镜、口罩等饰物现象。

  3. 摄像机的图像问题

  摄像机很多技术参数影响视频图像的质量,这些因素有感光器(CCD、CMOS)、感光器的大小、DSP的处理速度、内置图像处理芯片和镜头等,同时摄像机内置的一些设置参数也将影响视频质量,如曝光时间、光圈、动态白平衡等参数。

  4.丢帧和丢脸问题

  需要的网络识别和系统的计算识别可能会造成视频的丢帧和丢脸现象,特别是监控人流量大的区域,由于网络传输的带宽问题和计算能力问题,常常引起丢帧和丢脸。

  视频人脸识别监控的最优方案

  1.使用更先进的高清摄像头(3-5百万)。

  2.室内均匀光线,或室外白天,无侧光和直射光

  3.人群面向同样的方向,朝向相机的方向。

  4.恰当的监控点,如走廊、巷子或安检门/闸机口等(不要一群人同时出现)。

  5.相机与人脸的角度小于20°。

  决定监控系统性能的几个主要因素

  1.模板库的人数:不宜大,包含关键人物即可。

  2.经过摄像头的人数:同时出现在摄像头的人数决定了单位时间里的比对次数。

  3.报警反馈时间:实时性越强,对系统性能要求越高。

  4.摄像头采集帧数:帧数越高,人员经过摄像头前采集的次数越多,比对的次数也越多。

  报警过滤机制

  建立报警过滤机制是解决错误报警率高的有效方法,当监控名单库容量较大时,可以通过此方法,将错误报警率控制在千分之N的之内,使动态监控走向实际应用。

  综合来看,目前动态人脸识别技术的发展还远远达不到用户的需求,图像分析不尽人意,正确报警率普遍不高,误报率与大容量之间似乎不可调节,性价比较低等等问题似乎成为了动态人脸识别技术的绊脚石。但是,如何将这些绊脚石变为铺路石,正式各厂商及技术人员需要努力的目标。

  如果你有领先的技术要展示给外界,如果你还想在论坛上一展企业风采,如果你错过了本次GDSF论坛,没关系,我们将在下一站等候你的光临,届时,将会有更多安防届精英与您一起共议发展之道。详情请点击http://www.asmag.com.cn/gdsf/signupon/10/

点赞0
参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

a&s是国际知名展览公司——德国法兰克福展览集团旗下专业的自动化&安全生态服务平台,为智慧安防、智慧生活、智能交通、智能建筑、IT通讯&网络等从业者提供市场分析、技术资讯、方案评估、行业预测等,为读者搭建专业的行业交流平台。

© 2020 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备 12072668号
用户
反馈